An overdetermined problem with non-constant boundary condition
نویسندگان
چکیده
منابع مشابه
Remarks on an overdetermined boundary value problem
We modify and extend proofs of Serrin’s symmetry result for overdetermined boundary value problems from the Laplace-operator to a general quasilinear operator and remove a strong ellipticity assumption in [9] and a growth assumption in [5] on the diffusion coefficient A, as well as a starshapedness assumption on Ω in [4]. Mathematics Subject Classification (2000). 35J65, 35B35
متن کاملTHE ONE PHASE FREE BOUNDARY PROBLEM FOR THE p-LAPLACIAN WITH NON-CONSTANT BERNOULLI BOUNDARY CONDITION
Our objective, here, is to generalize our earlier results on the existence of classical convex solution to a free boundary problem with a Bernoullitype boundary gradient condition and with the p-Laplacian as the governing operator. The main theorems of this paper assert that the exterior and the interior free boundary problem with a Bernoulli law, i.e. with a prescribed pressure a(x) on the “fr...
متن کاملNvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition
Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...
متن کاملOn an Eighth Order Overdetermined Elliptic Boundary Value Problem
We consider the overdetermined boundary value problem for the 4-harmonic operator, Δ4 = Δ(Δ3) , and show that if the solution of the problem exists, then the domain must be an open N -ball (N 2) . As a consequence of overdetermined problems mean value results are obtained for harmonic, biharmonic, triharmonic and 4-harmonic functions. Mathematics subject classification (2010): 35J25, 35P15, 35B50.
متن کاملA Free Boundary Problem for the Laplacian with Constant Bernoulli-type Boundary Condition
We study a free boundary problem for the Laplace operator, where we impose a Bernoulli-type boundary condition. We show that there exists a solution to this problem. We use A. Beurling’s technique, by defining two classes of suband supersolutions and a Perron argument. We try to generalize here a previous work of A. Henrot and H. Shahgholian. We extend these results in different directions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Interfaces and Free Boundaries
سال: 2014
ISSN: 1463-9963
DOI: 10.4171/ifb/318